- [行业新闻]晶振市场庞大,唯独喜欢你2020年05月21日 16:56
做电子行业几年了?对电子行业了解吗?知道什么样的产品比较好,什么样的设备更适合自己不,以下的更多问号在此省略.做某件事有没有不达目的誓不罢休,没有完成不休息的决心,或者又是喜欢那个人那个物品不变心的,放在人与人可以说痴情,放在你与设备,人与元器件是不开窍?当然不是,只是单纯喜爱,就想爱普生晶振公司FC1610AN吸引我一样.
- 阅读(127)
- [行业新闻]日本毕业典礼能顺利进行是机器人振荡器的功劳2020年04月13日 17:21
- Newme机器人减少了人员的接触,让大学毕业生顺利毕业,是研发部又一大贡献.在大家眼中机器人可以代替普工的劳动生产,是减少服务员的招聘,谁又能想到可以用在毕业典礼上.校方和机器人一起见证毕业时代,是多么值得开心的时刻,看它的整体照片是有点怪怪的,但总的来说还是对社会的一大贡献.这一贡献少不了研发公司的投入,技术人员的精益求精,振荡器的应用.
- 阅读(110)
- [行业新闻]Analyze the aging of quartz crystal2019年10月31日 11:50
The 'ageing' of a quartz crystal results in a small change of frequency over time and this effect may have to be taken into account by the customer when designing their circuit depending upon the overall specification that needs to be achieved. There are two main causes of ageing in quartz crystals, one due to mass-transfer and the other due to stress.
Mass-Transfer
Any unwanted contamination inside the device package can transfer material to or from the SMD CRYSTALcausing a change in the mass of the quartz blank which will alter the frequency of the device. For example, the conductive epoxy used to mount the quartz blank can produce 'out-gassing' which can create oxidising material within the otherwise inert atmosphere inside the sealed crystal package and so this production process must be well controlled. Ideally the manufacturing method is as clean as possible to negate any effects and give good ageing results.
Stress
This can occur within various components of the crystal from the processing of the quartz blank, the curing of the epoxy mounting adhesive, the crystal mounting structure and the type of metal electrode material used in the device.Heating and cooling also causes stress due to different expansion coefficients. Stress in the system usually changes over time as the system relaxes and this can cause a change in frequency.
Ageing in practice
When looking at example ageing test results of crystals,it can be seen that the change in frequency is generally greatest in the 1st year and decays away with time. It must be noted however that for example if a device is specified at ±5ppm max per year; it does not follow that the ageing after 5 yrs will be ±5ppm x 5yrs, i.e. ±25ppm. In practice,the example ±5ppm ageing device may be only ±1ppm to ±2ppm in the 1st year of operation and then reduces over subsequent years. It is common to use a general 'guide-rule' for crystal ageing of ±10ppm max over 10 years although in reality it is usually much less than this. It is impossible to predict the exact ageing of a device as even parts made at the same time and from the same batch of quartz will exhibit slightly different ageing characteristics.The production process must be consistent from part to part, from the manufacture of the quartz blank, the electrode size and its placement, to the epoxy used to mount the quartz and its curing thermal profile, all have a slight affect on frequency. Devices can age negatively or positively depending upon the internal causes although parts from one batch tend to follow similar results. Generally the ageing effect is negative in over 90% of parts manufactured.
Accelerated ageing
It is common industry practice to use an accelerated ageing process to predict long term frequency movement by soaking devices at elevated temperatures and measuring frequency movement at relevant intervals. It is normal to test crystals using a passive test (i.e. non-powered). The general rule used is that soaking a crystal at +85℃ for 30 days is equivalent to 1 year of ageing at normal room temperature. If this test is extended for enough time then the recorded data can be plotted graphically to enable via extrapolation, the prediction of future long term ageing.
Frequency adjustment
Note that the ageing of quartz effectively changes the frequency tolerance of the crystal and does not directly influence the stability of the quartz over temperature to any great degree as this parameter is dictated by the 'cut-angle' of the quartz used. If using quartz oscillators that have a voltage-control function such as VCXOs, TCXOs or OCXOs, the output frequency can be adjusted back to its nominally specified value.
Design
The engineer designing a circuit using either a crystal or oscillator will generally know what overall stability figure their equipment must meet over a particular time period.
As the tolerance and/or stability of a device decreases then the more important ageing becomes. For example using a TCXO at ±1ppm stability over temperature will require ageing to be kept to relatively small values. However, if the total frequency movement allowance of a design is for example ±200ppm and a device with a rating of ±100ppm is used then a small amount of ageing can effectively be ignored.
- 阅读(158)
- [行业新闻]Crystal parameters description2019年10月29日 10:37
About Crystal parameters description,Crystal Project Name
AT Cut Crystals
For precise frequency control in radio and line communication systems, quartz crystal resonators have proved indispensable. The material properties of crystalline quartz are such that quartz resonators display stableness and Q factors that cannot be matched by other types of resonator over the frequency range from 1 MHz to 200 MHz.
Equivalent Circuit
Fig-1 shows the conventionally accepted equivalent circuit of a crystal resonator at a frequency near its main mode of vibration. The inductance LI reiperesents the vibrating mass, the series capacitance CL the compliance of the quartz element and the resistance Rl the internal frication of the element, mechanical losses in the mounting system and acoustical losses to the surrounding environment.
The shunt capacitance Co is made up of the static capacitance between the electrodes, togettier with stray capacitances of the mounting system.
There are two zero-phase frequencies associated with this simple circuit, one is at series resonance fs, another at antiresonance fa. When used in an oscillator, crystal units will operate at any frequency within the broken lines of Fig-2 as determined by the phase of the maintaining circuit.
By changing of this reactive condition, the crystal frequency may be trimmed in a limited extent. The degree to which this frequency may be varied (frequency pulling) is inversely proportional to the capacitance ratio r(C〇 /Ci).
Load Capacitance
Many practical oscillator circuits make use of a load capacitor CL in series or parallel with the crystal, either in order to provide a means for final frequency adjustment, or perhaps for modulation or temperature compensation purposes. For the crystal load capacitance. We looking into the circuit through the two crystal terminals, the load capacitance need to specified when the crystal is paralleled mode, crystal load capacitance is calculated as below:
Frequency Pulling
In many applications a variable capacitor (trimmer) is used as the load reactive element to adjust the frequency. The fractional frequency range available between specified values of this load reactive element is called the pulling range (PR.) and it can be calculated by using the following formula:
Sensitivity
A useful parameter to the design engineer is the pulling sensitivity (S) at a specified value of load capacitance. It is defined as the incremental fractional frequency change for an incremental change in load capacitance. It is normally expressed in ppm/pF (10-6/pF) and can be calculated from the formula:
It is very important to define the mean load capacitance to enable the actual crystal frequency be set within the tolerances of the specified nominal frequency. It is also important to use, wherever possible, standard values of load capacitance; for example:20pF, 30pF.
Fig-3 shows the relationship between LO.; P.R. and S.
Frequency Pulling Calculation
An approximation to the pulling for any crystal can be calculated from this simple formula:
Resistance
The equivalent circuit of the crystal has one other important parameter: This is Ri, the motional resistance. This parameter controls the Q of the crystal unit and will define the level of oscillation in any maintaining circuit. The load resonance for a given crystal unit depends upon the load capacitance with which that unit is intended to operate. The frequency of oscillation is the same in either series or parallel connection of the load capacitance.
If the external capacitance is designated the load resonance resistance may be calculated as follows:
The equivalent shunt or parallel resistance at load resonance frequency is approximately:
It should be remembered that Ri does not change thus the effective parameters of any user network can be readily calculated.
Frequency Temperature Characteristics
The AT-cut crystal has a frequency temperature characteristic which may be described by a cubic function of temperature. This characteristic can be precisely controlled by small variations in the exact angle at which the crystal blank is cut from the original quartz bar. Fig,4 illustrates some typical cases. This cubic behaviour is in contrast to most other crystal cuts, which have parabolic temperature characteristics.
As a consequence, the AT-cut is generally the best choice when specifying a unit to operate over a wide temperature range, and is available in a range of frequencies from 1 to 200 MHz.
- 阅读(229)
- [晶振编码查询]1XTV19200CDB|DSA321SDA晶振|KDS晶振|株式会社大真空|VCTCXO晶振2019年09月06日 09:21
KDS 晶振即是日本大真空株式会社(DASHINKU CORP),成立于 1951 年,至今已有 50 多年的历史,是全球领先的三大晶振制造商之一,其制造工厂主要分布在日本本土、中国、泰国、印度尼西亚等十多个制造中心,KDS 大真空集团总公司位于日本兵库县加古川,在泰国,印度尼西亚,台湾,中国天津这些大城市均有生产工厂,其中天津工厂是全球晶振行业最大的单体制造工厂,也是全球最大的 TF 型晶振制造工厂.
首先非常的感谢你长期以来对【日本大真空株式会社】,KDS 晶振品牌的支持与厚爱.在此郑重声明,本集团以下简称(KDS)在中国的代理商除了北京中国电子研究院,广州电子研究所,【泰河电子】,香港 KDS办事处,台湾KDS办事处,是正规的代理销售企业,其余地区以及公司,个人所销售的KDS产品均不能保证是原装正品,请你选择正规渠道定制货品.
1XTV19200CDB|KDS晶振|株式会社大真空|VC-TCXO振荡器
Model Name 型号 DSA321SDA Original code 原厂代码 1XTV19200CDB Device Name 产品名称系列 VC-TCXO(压控温补振荡器) Nominal Frequency 标称频率 19.2 MHZ Supply Voltage 电源电压
2.8V Load Impedance 负载阻抗 (resistance part)(parallel capacitance)
10 kΩ
10 pF
Control Voltage Range 控制电压范围
1.15 V Operating Temperature Range 工作温度范围
-40~+85℃ Storage temperature 储存温度
-40~+8512px;word-spacing:-1.5px"="" style="font-size:14px">℃ Current Consumption 电流消耗
1.5 mA Output Level 输出电平
0.8 Vp-p Symmetry 对称性
40/60% Harmonics 谐波
-8 dBc
SIZE 尺寸 3.2*2.5*0.9mm 1XTV19200CDB晶振产品尺寸图
1XTV19200CDB晶振产品电气表
关于1XTV19200CDB压控温补振荡器产品安装的注意事项
1端子A通孔不在底部(安装侧)。
2土地图案布局/金属掩模孔以下土地图案为参考设计。电气特性应满足安装在这片土地上的要求。在测试用地和安装用地不相连的范围内,可以改变接地方式。
对电特性没有任何影响。面罩厚度建议为0.12毫米。包装条件
胶带包装
(1)压花胶带格式及尺寸
(2)卷筒数量:最多2000个/卷
(3)胶带规格
不缺产品。
(4)卷筒规格见图3
包装
产品用防静电袋包装。
*湿度敏感度等级:IPC/JEDEC标准J-STD-033/1级
无需干燥包装,无需重新储存后烘烤。
包装箱
最多10卷/包装箱。但是,在少于10卷的情况下,它由任何盒子容纳。
盒子里的空间用垫子填满了。
- 阅读(128)
- [技术支持]时钟晶体振荡器的使用与终端设计2019年09月05日 16:50
在当今的高性能系统中,需要一个出色的时钟源。随着专用集成电路(ASIC)的速度和性能达到更高的限制,分配该时钟源以驱动多个设备的需求变得更加困难。由于相关的快速边沿速率,系统中部署的较高频率导致长PCB迹线表现得像传输线。保持平衡系统需要适当的端接技术来实现应用中的跟踪路由。本应用笔记将重点介绍推荐的终止技术;关于输出负载的评论,并提供一些设计师要考虑的布局指南。
传输线理论简介
通常,大多数时钟源具有低阻抗输出。当这些器件用于驱动具有大阻抗的负载时,存在阻抗不匹配。根据应用条件,此阻抗不匹配会导致负载产生电压反射,从而产生时钟波形中的步进,振铃以及过冲和下冲。这可能通过降低负载处的时钟信号,错误的数据时钟和产生更高的系统噪声而导致系统性能不佳。
为了减少电压反射,需要正确终止信号迹线。适当终止的设计考虑因素可以用两个语句来概括:
1.使负载阻抗与线路阻抗相匹配
2.使源阻抗与线路阻抗匹配
对于大多数设计,第一种说法是首选方法,因为它消除了返回时钟源的反射。这样可以减少噪音,电磁干扰(EMI)和射频干扰(RFI)。
下图显示了阻抗不匹配对时钟源的影响
常用终止技术
如上所述,为了减少电压反射,必须正确地终止迹线。 传输线的四种基本端接技术是串联,并联,戴维宁和AC。
系列终止
串联终端消除了时钟源的反射,有助于保持信号质量。 这最适合驱动少量负载的TTL器件,因为时钟输出阻抗小于传输线特性阻抗。 图1显示了一系列终端。 电阻尽可能靠近时钟源放置。 R的典型设计值为10Ω至75Ω。
R的值可以大于阻抗差,以便产生稍微过阻尼的状态并且仍然消除来自时钟源的反射。
系列终端的主要优点是:
1.简单,只需要一个电阻器
2.功耗低
3.在驱动高容性负载时提供电流限制;这还可以通过减少接地反弹来改善抖动性能
系列终止的主要缺点是:
1.增加负载信号的上升和下降时间;这在一些高速应用中可能是不可接受的
2.无法驱动多个负载
平行和戴维宁终结
接下来的三种终端技术可提供更清晰的时钟信号,并消除负载端的反射。这些终端应尽可能靠近负载放置。
图2描绘了并行终端。并联终端消耗的功率最大,不建议用于低功率应用。它也可能改变占空比,因为下降沿将比上升沿更快。它比串联终端具有一个优点,即上升和下降时间的延迟大约是一半。
如图3所示,戴维宁终端将比并联终端消耗更少的功率,并且通常用于PECL应用,50Ω线路匹配至关重要。 R的总值等于传输线的特征阻抗。 如果需要过阻尼状态,则R的总值可略小于特征阻抗。 戴维宁终端的主要缺点是每条线路需要两个电阻器,并且在终端附近需要两个电源电压。 建议不要将此端接用于TTL或CMOS电路。
AC终止
AC端接,如图4所示,在并联支路中增加了一个串联电容。 由于RC时间常数,电容会增加时钟源的负载和延迟,但在稳态条件下将消耗很少或没有功率。 通常不建议使用此终端,因为它会通过增加传播延迟时间来降低时钟信号的性能。 为了保持有效终止,C L的值不应小于50pF。 较大的C L值将允许时钟边沿的快速转换,但随着电容器值的增加,较高的电流电平将通过,从而导致功耗的增加。 选择大于走线阻抗的R L值,以考虑负载输入阻抗的泄漏。
输出负载简介
应注意不要使时钟源过载。 如果使用单个时钟源来驱动多个负载,则如果总负载超过时钟源的驱动能力,则会发生波形劣化。
过载的一些常见症状是波形削波,对称不平衡,信号幅度减小以及上升和下降时间值的变化。 通常随着时钟频率的增加,源驱动更高负载的能力将降低。 请务必参考时钟源规范以获得最大负载能力。
下图显示了重载对时钟源的影响。
通用时钟输出类型
CTS时钟振荡器设计已经开发出来,具有各种封装选项,输入电压和输出类型。
HCMOS和HCMOS / TTL兼容
今天的CTS设计提供“双兼容”振荡器,它们是能够驱动TTL应用的HCMOS输出类型。 由于转换时间较短,这些设备固有地具有更大的过冲和欠冲。 这可能不适合具有严格EMI要求的旧TTL设计。
CTS生产两种流行的HCMOS / TTL兼容时钟振荡器CB3 / CB3LV和型号636。
下图显示了典型的HCMOS测试负载配置和波形参数。
LVPECL和LVDS
与HCMOS逻辑技术相比,CTS LVPECL和LVDS逻辑输出设计具有许多优势。
LVPECL和LVDS技术从正电源获得其工作功率,从而实现与负载点处的HCMOS逻辑接口的必要兼容性。 这些逻辑输出还具有:
1.降低系统抖动; 由于较小的特征过渡区域
2.上升和下降时间更快
3.提供差分输出; 减少排放至关重要
4.能够直接驱动50Ω传输线
5.降低高频时的电源消耗
CTS Model 635提供两种输出类型的选项。
下图显示了典型的LVPECL和LVDS测试负载配置和波形参数
布局指南
在印刷电路板布局过程中采用良好的设计实践将最小化先前讨论的信号劣化。 PCB设计的一些常见指南是:
1.将时钟源物理定位在尽可能靠近负载的位置
2.限制时钟信号的走线长度
3.不要将时钟信号靠近电路板边缘
4.尽量避免在时钟信号路由中使用过孔。 过孔会改变走线阻抗,从而引起反射。
5.不要在电源和接地层上布设信号走线
6.避免在轨迹中出现直角弯曲,如果可能,请保持直线行程。 如果需要弯曲,请使用两个45°角或使用圆形弯曲(最佳).
7. V CC与时钟源地之间的去耦电容对于降低可能传输到时钟信号的噪声至关重要。 这些电容必须尽可能靠近V CC引脚。
8.为避免串扰,请在多个时钟源和高速开关总线之间保持适当的间隔。
9.差分跟踪路由应尽可能接近,以获得高耦合系数。 路由的长度应相等,以避免阻抗不匹配,从而导致不同的传播延迟时间。
10.使用单个时钟源驱动多个负载时,请考虑拆分路由。 使各个布线长度尽可能相等。
结论
本应用笔记介绍了使用驱动各种负载的时钟源的应用的正确终端技术。 它还概述了用于生成可靠应用程序设计的布局考虑因素 所有这些技术都力求最大限度地减少降低时钟信号的条件,从而导致系统性能不佳。
- 阅读(184)
- [晶振编码查询]1XTV26000AAD|KDS晶振|株式会社大真空|VCTCXO晶振2019年08月30日 08:39
KDS 晶振即是日本大真空株式会社(DASHINKU CORP),成立于 1951 年,至今已有 50 多年的历史,是全球领先的三大晶振制造商之一,其制造工厂主要分布在日本本土、中国、泰国、印度尼西亚等十多个制造中心,KDS 大真空集团总公司位于日本兵库县加古川,在泰国,印度尼西亚,台湾,中国天津这些大城市均有生产工厂,其中天津工厂是全球晶振行业最大的单体制造工厂,也是全球最大的 TF 型晶振制造工厂.
首先非常的感谢你长期以来对【日本大真空株式会社】,KDS 晶振品牌的支持与厚爱.在此郑重声明,本集团以下简称(KDS)在中国的代理商除了北京中国电子研究院,广州电子研究所,【泰河电子】,香港 KDS办事处,台湾KDS办事处,是正规的代理销售企业,其余地区以及公司,个人所销售的KDS产品均不能保证是原装正品,请你选择正规渠道定制货品.
1XTV26000AAD|KDS晶振|株式会社大真空|VC-TCXO振荡器
Model Name 型号 DSA321SCA Original code 原厂代码 1XTV26000AAD Device Name 产品名称系列 VC-TCXO(压控温补振荡器) Nominal Frequency 标称频率 26 MHZ Supply Voltage 电源电压
2.8V Load Impedance 负载阻抗 (resistance part)(parallel capacitance)
10 kΩ
10 pF
Control Voltage Range 控制电压范围
1.15 V Operating Temperature Range 工作温度范围
-40~+85℃ Storage temperature 储存温度
-40~+8512px;word-spacing:-1.5px"="" style="font-size:14px">℃ Current Consumption 电流消耗
1.5 mA Output Level 输出电平
0.8 Vp-p Symmetry 对称性
40/60% Harmonics 谐波
-8 dBc
SIZE 尺寸 3.2*2.5*0.9mm 1XTV26000AAD晶振产品尺寸图
1XTV26000AAD晶振产品电气表
关于1XTV26000AAD压控温补振荡器产品安装的注意事项
1端子A通孔不在底部(安装侧)。
2土地图案布局/金属掩模孔以下土地图案为参考设计。电气特性应满足安装在这片土地上的要求。在测试用地和安装用地不相连的范围内,可以改变接地方式。
对电特性没有任何影响。面罩厚度建议为0.12毫米。包装条件
胶带包装
(1)压花胶带格式及尺寸
(2)卷筒数量:最多2000个/卷
(3)胶带规格
不缺产品。
(4)卷筒规格见图3
包装
产品用防静电袋包装。
*湿度敏感度等级:IPC/JEDEC标准J-STD-033/1级
无需干燥包装,无需重新储存后烘烤。
包装箱
最多10卷/包装箱。但是,在少于10卷的情况下,它由任何盒子容纳。
盒子里的空间用垫子填满了。
- 阅读(111)
- [晶振编码查询]1XTV26000JBA|KDS晶振|株式会社大真空|VCTCXO晶振2019年08月21日 09:02
KDS 晶振即是日本大真空株式会社(DASHINKU CORP),成立于 1951 年,至今已有 50 多年的历史,是全球领先的三大晶振制造商之一,其制造工厂主要分布在日本本土、中国、泰国、印度尼西亚等十多个制造中心,KDS 大真空集团总公司位于日本兵库县加古川,在泰国,印度尼西亚,台湾,中国天津这些大城市均有生产工厂,其中天津工厂是全球晶振行业最大的单体制造工厂,也是全球最大的 TF 型晶振制造工厂.
首先非常的感谢你长期以来对【日本大真空株式会社】,KDS 晶振品牌的支持与厚爱.在此郑重声明,本集团以下简称(KDS)在中国的代理商除了北京中国电子研究院,广州电子研究所,【泰河电子】,香港 KDS办事处,台湾KDS办事处,是正规的代理销售企业,其余地区以及公司,个人所销售的KDS产品均不能保证是原装正品,请你选择正规渠道定制货品.
1XTV26000JBA|KDS晶振|株式会社大真空|VC-TCXO振荡器
Model Name 型号 DSA321SDM Original code 原厂代码 1XTV26000JBA Device Name 产品名称系列 VC-TCXO(压控温补振荡器) Nominal Frequency 标称频率 26 MHZ Supply Voltage 电源电压
3.3V Load Impedance 负载阻抗 (resistance part)(parallel capacitance)
10 kΩ
10 pF
Control Voltage Range 控制电压范围
1.15 V Operating Temperature Range 工作温度范围
-40~+85℃ Storage temperature 储存温度
-40~+8512px;word-spacing:-1.5px"="" style="font-size:14px">℃ Current Consumption 电流消耗
1.5 mA Output Level 输出电平
0.8 Vp-p Symmetry 对称性
40/60% Harmonics 谐波
-8 dBc
SIZE 尺寸 3.2*2.5*0.9mm 1XTV26000JBA晶振产品尺寸图
1XTV26000JBA晶振产品电气表
关于1XTV26000JBA压控温补振荡器产品安装的注意事项
1端子A通孔不在底部(安装侧)。
2土地图案布局/金属掩模孔以下土地图案为参考设计。电气特性应满足安装在这片土地上的要求。在测试用地和安装用地不相连的范围内,可以改变接地方式。
对电特性没有任何影响。面罩厚度建议为0.12毫米。包装条件
胶带包装
(1)压花胶带格式及尺寸
(2)卷筒数量:最多2000个/卷
(3)胶带规格
不缺产品。
(4)卷筒规格见图3
包装
产品用防静电袋包装。
*湿度敏感度等级:IPC/JEDEC标准J-STD-033/1级
无需干燥包装,无需重新储存后烘烤。
包装箱
最多10卷/包装箱。但是,在少于10卷的情况下,它由任何盒子容纳。
盒子里的空间用垫子填满了。
- 阅读(88)
- [晶振编码查询]1XXB26000MAA|KDS晶振|株式会社大真空|TCXO振荡器2019年08月20日 09:24
1XXB26000MAA|KDS晶振|株式会社大真空|TCXO振荡器
Model Name 型号 DSB221SDN晶振 Original code 原厂代码 1XXB26000MAA Device Name 产品名称系列 TCXO(温补振荡器) Nominal Frequency 标称频率 26 MHZ Supply Voltage 电源电压
1.8V Load Impedance 负载阻抗 (resistance part)(parallel capacitance)
10 kΩ
10 pF
Control Voltage Range 控制电压范围
1.15 V Operating Temperature Range 工作温度范围
-40~+85℃ Storage temperature 储存温度
-40~+8512px;word-spacing:-1.5px"="" style="font-size:14px">℃ Current Consumption 电流消耗
1.5 mA Output Level 输出电平
0.8 Vp-p Symmetry 对称性
40/60% Harmonics 谐波
-8 dBc
SIZE 尺寸 2.5*2.0*0.8mm 1XXB26000MAA晶振产品尺寸图
1XXB26000MAA晶振产品电气表
关于1XXB26000MAA温补晶振产品安装的注意事项
1端子A通孔不在底部(安装侧)。
2土地图案布局/金属掩模孔以下土地图案为参考设计。电气特性应满足安装在这片土地上的要求。在测试用地和安装用地不相连的范围内,可以改变接地方式。
对电特性没有任何影响。面罩厚度建议为0.12毫米。包装条件
胶带包装
(1)压花胶带格式及尺寸
(2)卷筒数量:最多2000个/卷
(3)胶带规格
不缺产品。
(4)卷筒规格见图3
包装
产品用防静电袋包装。
*湿度敏感度等级:IPC/JEDEC标准J-STD-033/1级
无需干燥包装,无需重新储存后烘烤。
包装箱
最多10卷/包装箱。但是,在少于10卷的情况下,它由任何盒子容纳。
盒子里的空间用垫子填满了。
- 阅读(133)
- [常见问题]如何改善晶振振荡频率的差异2019年08月17日 13:57
晶振振荡频率的较大差异(正侧或负侧的大振荡频率)意味着电路负载电容(由振荡电路电容器电容和基板杂散电容引起的电路电容)和晶体振荡器负载这意味着容量存在很大差异(晶体单元规格中描述的负载容量).
如何改善晶振振荡频率的差异,有两种方法可以改善振荡频率的差异(方法接近±0ppm),并且考虑到振荡电路的其他特性(负电阻,部落电平)来选择改进方法.
1、使电路负载容量更接近晶体振荡器负载容量的方法NDK晶振公司的基本方法是通过仅改变电路负载容量而不改变当前晶体振荡器负载容量来改善振荡频率的差异.
- 阅读(265)
- [晶振编码查询]1C208000BC0U|KDS晶振|株式会社大真空|陶瓷面晶体2019年07月29日 09:55
1C208000BC0U|KDS晶振|株式会社大真空|陶瓷面晶体
Model Name 型号 DSX321G晶振 Original code 原厂代码 1C208000BC0U Device Name 产品名称系列 CRYSTAL(石英晶体) Nominal Frequency 标称频率 8.000000 MHZ LOAD CAPACITANCE(CL) 负载电容
12.0PF DRIVE LEVEL 驱动电平
10 uW
FREQUENCY TOLERANCE 频率偏差
20ppm Operating Temperature Range 工作温度范围
-30~+85℃ Storage temperature 储存温度
-40~+8512px;word-spacing:-1.5px"="" style="font-size:14px">℃ SHUNT CAPACITANCE(C0) 并联电容
2.0pF max FREQUENCY CHARACTERISTICS OVER频率特性
30ppm INSULATION RESISTANCE 绝缘电阻
500 Mohms min.at 100v DC OVERTONE ORDER 泛音顺序
基本
SIZE 尺寸 3.2*2.5*0.85mm DIMENSIONS 尺寸外型图
Dimensions of embossed carrier tape 压花载带尺寸图
Dimensions of tape reel 卷尺尺寸图
- 阅读(224)
- [晶振编码查询]1XXA26000MEA|KDS晶振|株式会社大真空|VCXO振荡器2019年07月29日 08:47
- 阅读(197)
- [晶振编码查询]7A08000001规格书2019年07月22日 11:51
- 阅读(153)
- [行业新闻]KVG晶振公司的历史2019年05月28日 10:50
石英晶体振荡器是用于生产振动的电路,由于振荡器的频率决定元件所包含的一个石英晶体振荡器,石英晶体振荡器可说服它们的频率精度和频率稳定性。实际上,这些电路经常被用作无线电,处理器和微控制的时钟。此外,大家可以在石英表中找到它们。因此石英和石英晶体振荡器被认为是数据传输和电信中频率控制的最重要组成部分,这也并不奇怪,因为它们的主要优点包括高谐振质量,大量振荡器选择和高频率性。
于对用于测量设备,卫星导航设备或者电信设备而言,由于价格敏感,振荡器的要注主要取决于频率,稳定性,外壳类型,输出信号和温度范围。例如,仪表,卫星导航设备或电信设备等专业应用对内置振荡器有更高的要求。包括具有良好的稳定性。低相位噪声和长寿命。为了实现这一点,所使用的石英还必须具有改进的老化性能,以实现相应的整体性能。为了最小化初始老化效应,所有振荡器都需要经历所谓的预老化过程,因此,只有在运行了几天后才能达到最终的稳定性。
KVG QUARTZ CRYSTAL TECHNOLOGY GMBH公司成立于1946年.在第二次世界大战结束后不久,物理学家库尔特·克林林创建了KVG公司. 不久后KVG公司就迁往内卡比绍夫斯海姆, 也就是现在KVG总公司所在地. 在1996年,KVG成为美国Dover有限公司在欧洲的晶体与晶体振荡器产品的合作伙伴。 1997年,晶体陶瓷在OCXOs和精准晶体的生产中被实际使用, 从而闻名世界.
从2002年起,KVG再次成为独立公司. 新的公司领导者曼弗雷德·克利姆和格尔德克劳斯科夫先生都是在这行业具有多年的经验.
以下是KVG晶振公司的发展历史。
KVG公司的发展史展现了晶体产品生产技术持续更新发展的过程:
· 1963 KVG使用合成晶体材料.
· 1964 研发和生产晶体滤波器.
· 1968 生产温度补偿晶振TCXOs.
· 1970 晶体生产中的直接溅镀.
· 1971 整块晶体滤波器的生产.
· 1972 生产凸面性晶体晶片.
· 1974 引进射线测量技术用于切割面角度的测定.
· 1979 以电脑为后台的晶体温度测定.
· 1981 以计算机为支持的TCXO的生产.
· 1983 KVG研发基于晶体的传感器和研发OCXOs.
· 1987 基于计算机控制的质量管理体系.
· 1988 SMD组件的自动装备机.
· 1993 622.08MHz的VCXOs.
· 1994 建立产品线,以HFF为晶体基座,最大振动频率达到200MHz.
· 1994 用SC-晶体生产OCXOs.
· 1995 使用镭射技术进行晶振的频率协调.
· 1997 生产 SMD OCXOs系列的 OCXO-6000.
· 1998 生产ASIC-TCXOs.
· 1999 用HFF晶体生产VCXOs.
· 2000 建立新生产,用于生产精准晶体的产品系列.
· 2002 KVG重塑独立实体.
· 2003 在晶体振荡器中使用电子谐频.
· 2005 设计出低相噪OCXO.
· 2007 设计出航天级的晶体.
· 2008 设计出航天级的晶体振荡器.
· 2009 建成新的生产设备.
· 2010 KVG重组了晶体和振荡器生产工厂.
· 2010 设计出抗冲击振动 OCXOs.
· 2011 空间晶体得到欧洲航天局的资格认证.
· 2013 以晶体振荡器XO和VCXO成为欧洲航天局的资格供应商.
· 2014 采用机械阻尼OCXO模块.
· 2015 设计出超低相躁RF-OCXO和抗冲击振动OCXO.
在恒温晶振的领域内的新设计,如提高抗冲击振动技术,新的RF TCXO和OCXO,使得在晶体和晶体振荡器的领域再次设定了标准.
- 阅读(233)
- [行业新闻]MtronPTI公司的发源史2019年05月27日 11:24
凭借1965年雷达用精密晶体滤波器的基础,Mtronpti设计和制造了用于高可靠性和恶劣环境应用中的数据定时和射频频谱控制的射频和微波解决方案。Mtronpti成立于2004年,由M-tron Industries,Inc.收购Piezo Technology,Inc.,是LGL Group,Inc.的全资子公司。
在航空航天和国防市场,Mtronpti的数字调谐滤波器支持在存在电磁干扰的情况下进行安全通信。低漂移、高精度振荡器为地面、车辆、空中和卫星通信以及电子对抗提供可靠的频率锁定。抗振动和冲击的水晶钟使雷达图像更加清晰,并有助于监控商用飞机发动机的性能。
对于互联网通信,mtronpti晶振公司具有非常低的噪声和包同步时钟有助于增加带宽,防止蜂窝基站、micro和femto蜂窝以及Wi-Fi接入点的数据丢失。毫米波滤波器确保公司和电信的点对点链接保持无误。
在实验室工作台或消费电子产品生产测试台上,mtronpti超低噪声频率基准振荡器确保了准确的测量。当公共安全至关重要时,mtronpti宽温度范围/防水腔过滤器确保可靠的无线电通信。
卫星链路、相控阵雷达和抗IED干扰机使用mtronpti射频功率放大器将信号增强到天线。
Mtronpti晶振公司位于佛罗里达州奥兰多,在美国和印度制造业,在垂直方向上与基础材料科学、设计和制造方面的丰富经验相结合。凭借AS9100 C版和ISO 9001:2008全球认证、销售和支持,作为公认的服务领导者,MTronpti通过分销合作伙伴支持思科、雷神、爱立信、哈里斯、罗克韦尔柯林斯、联合技术航空和近2000家小型客户等主要原始设备制造商的创新和可靠性
LGL集团公司的工程和设计起源可以追溯到上个世纪初。 1917年,LGL的前身林奇玻璃机械公司成立,并在二十年代末成为玻璃成型机械的成功制造商。该公司后来更名为林奇公司,并于1928年根据印第安纳州法律注册成立。 1946年,林奇被列入“纽约路边交易所”,这是纽约证券交易所MKT的前身。该公司在精密工程,制造和服务领域拥有和经营各种业务的历史悠久。
LGL集团公司(以下简称“公司”)于2007年根据特拉华州法律重新注册,并作为控股公司,其子公司从事定制设计,高度工程化的电子元件制造。该公司的办公室位于佛罗里达州奥兰多市沙德路2525号,邮编32804。公司的普通股在纽约证券交易所股票代码:MKT上以股票代码“LGL”进行交易。
公司通过其主要子公司M-tron Industries,Inc.运营,包括M-tron Industries,Ltd.(“MTRON”)的运营,以及MTRON的子公司Piezo Technology,Inc.和Piezo Technology India Private Ltd.(合称“PTI”)。2004年10月,MTRON和PTI合并为一家公司,拥有业内最广泛的产品组合之一。MTRONPIT和PTI的联合业务被称为“MTRONPIT”。MTRONPIT在奥兰多、佛罗里达、扬克顿、南达科他州和印度诺伊达都有业务。此外,MtronPTI在香港和中国的上海设有销售办事处。
Mtron Industries,Inc.(“MTRON”)始建于1965年,原名为Mechtronics,Industries,Inc.。此后不久,该公司正式更名为M-tron Industries,Inc.。早期,MTRON的主要业务是为CB无线电市场制造晶振。当20世纪70年代末技术发生变化时,MTRON也发生了变化。营销方式的改变和产品的持续发展为公司提供了新的生活。MTRON被称为高质量、高可靠性晶体、振荡器的供应商,在某种程度上,VCXO(压电控制晶振)和TCXO(温度补偿晶振)产品将用于诸如电信基础设施(用于制造电话系统)以及后来的互联网功能等应用。1976年,M-tron Industries,Inc.被收购。2002年,MTRON收购了伊利诺伊州富兰克林公园的Champion Technologies,Inc.的资产。在20世纪80年代中期,Champion是摩托罗拉的子公司。这次收购通过扩大产品供应和客户群,帮助MTRON从2001年和2002年的电信市场崩溃中更快地复苏。
1965年,几乎在MTRON成立的同时,成立了另一家公司,名为Piezo Technology,Inc.。PTI的成立是为了设计和建造用于所有类型设备的晶体滤波器,其中某些类型的噪声需要从电路中过滤出来。多年来,PTI在业务和产品方面都有所发展,包括LC(集总元件)滤波器、TCXO和OCXO(恒温晶体振荡器)产品。PTI的主要市场是军事、航空电子和仪器仪表。1995年,PTI在印度开设了生产基地,2004年M-tron Industries,Inc.收购了Piezo Technology,Inc.。
LGL的业务发展战略主要集中在通过MTRONPTI晶振通过有机增长、扩展到新的地理市场细分市场以及通过其他战略机会扩展现有业务。MtronPTI目前在全球范围内占有一席之地,为大多数需要精确定时和过滤产品的主要市场提供服务。公司的目标细分市场包括高端电信、军事、仪器、空间和航空电子设备(简称“MISA”)。
- 阅读(470)
- [行业新闻]村田新产品MEMS谐振器应用指南2019年04月20日 09:04
日本村田新研发出一款MEMS谐振器,尺寸仅有0.9*0.6*0.3mm。实现了现石英晶体谐振器达不到超小尺寸,并且低ESR特性的产品。MEMS谐振器的诞生可代替许多石英晶体谐振器。有很多人就想问了什么是MEMS谐振器?它跟振荡器有什么区别?MEMS谐振器有哪些特点?工作原理有哪些?使用都需要注意一些什么问题?等等一大串的问题就随之而来了。
那么我们将一一把问题给大家回复。
首先,大家肯定是会对日本村田陶瓷晶振制作所研发出的产品有些疑问,什么是MEMS呢?其实MEMS指的是微机电系统(Micro Mlectro Mechanical Systems),这种装置运用了半导体生产工艺技术,具有三维微细结构。除了面对MEMS谐振器还有一种是振荡器,MEMS振荡器跟其它普通石英晶体振荡器是一样的,将振荡用电路也谐振器融为一体的装置。可用科尔皮兹振荡电路之类的普通振荡电路驱动。
WMRAG32K76CS1C00R0谐振器是村田MEMS技术的代表作品。该产品具有体极柢的ESR特性以及极小尺寸封装,这个是目前石英晶体谐振器无法实现的突破。极小的尺寸有助于减小安装面积,通过优化IC增益,实现了低ESR的MEMS谐振器,降低了功耗。也可用于回流焊接,引线键合和传递模型。WMRAG32K76CS1C00R0谐振器具有晶体该有的特性,32.768KHZ标频以及20PPM标准稳定偏差。可在-30~+85度下正常工作。驱动电平在0.2μW以内。当您考虑置换晶体的时候,要注意晶体谐振器和MEMS谐振器的负载电容量值不同。
并且要知道MEMS谐振器与普通石英晶体谐振器的区别。
- 阅读(225)
- [技术支持]What is frequency at load capacitance?2019年04月16日 10:07
1. Introduction
When ordering crystals for oscillators that are to operate at a frequency f, e.g. 32.768 kHz or 20 MHz, it is usually not sufficient to specify the frequency of operation alone. While the crystals will oscillate at a frequency near their series resonant frequency, the actual frequency of oscillation is usually slightly different from this frequency (being slightly higher in “parallel resonant circuits”).1
So, suppose you have a crystal oscillator circuit and you want to purchase crystals such that when placed in this circuit the oscillation frequency is f. What do you need to tell the crystal manufacturer to accomplish this? Do you need to send a schematic of the oscillator design with all the associated details of its design, e.g. choice of capacitors, resistors, active elements, and strays associated with the layout? Fortunately, the answer is no. In addition to the frequency f, all that is needed is a single number, the load capacitance CL .
2. What is CL ?
Suppose your crystal oscillator operates at the desired frequency f. At that frequency, the crystal has complex impedance Z, and for the purposes of frequency of operation, this is the only property of the crystal that matters. Therefore, to make your oscillator operate at the frequency f, you need crystals that have impedance Z at the frequency f. So, at worst, all you need to specify is a single complex number Z = R+jX. In fact, it is even simpler than this.
While in principal one should specify the crystal resistance R at the frequency f, usually the crystal-to- crystal variation in R and the oscillator’s sensitivity to this variation are sufficiently low that a specification of R is not necessary. This is not to say that the crystal resistance has no effect; it does. We shall discuss this further in Section 4.
So, that leaves a single value to specify: The crystal reactance X at f. So, one could specify a crystal having a reactance of 400 ? at 20 MHz. Instead,however, this is normally done by specifying a capacitance C L and equating.
where we have set ω = 2πf. Physically, at this frequency, the impedance of the series combination of the crystal and a capacitance C L has zero phase (equivalently, has zero reactance or is purely resistive). See Figure 1. To see this, consider
where the second step follows by Equation (1) and the fact that the reactance of a capacitance C is -1/( ωC).
Figure 1—This series combination has zero-phase impedance at a frequency where the crystal has load capacitance CL
So, the task of assuring proper oscillation frequency is the task of providing components (crystals in this case) that, at the specified frequency, have the required reactance, which is stated in terms of a capacitance CL by Equation (1).2 For example, instead of specifying crystals having a reactance of 400 ? at 20 MHz, we specify crystals having a load capacitance of 20 pF at 20 MHz, or more normally, we specify that the crystal frequency be 20 MHz at a load capacitance of 20 pF.
In “parallel resonant circuits,” CL is positive, typically being between 5 pF and 40 pF. In this case the crystal operates in that narrow frequency band between the crystal’s series and parallel resonant frequencies (F s and F p , respectively).
While a truly “series resonant circuit” does not have a load capacitance associated with it [or perhaps an infinite value by Equation (1)], most “series resonant circuits” actually operate slightly off of the series resonant frequency and therefore do have a finite load capacitance (that can be positive or negative).However, if this offset is small and specifying a load capacitance is not desired, it can either be ignored or handled by a slight offset in the specified frequency f.
As we shall see in Section 4, both the oscillator and the crystal determine C L . However, the crystal’s role is rather weak in that in the limit of zero resistance,the crystal plays no role at all in determining C L . In this limiting case, it makes sense to refer to C L as the oscillator load capacitance as it is determined entirely by the oscillator. However, when it comes time to order crystals, one specifies crystals having frequency f at a load capacitance C L , i.e. it is a condition on the crystal’s frequency. Because of this,it would be reasonable to refer to C L as the crystal load capacitance. For the sake of argument, we simply avoid the issue and use the term loadcapacitance.
注释:1> When ordering crystals for series resonant operation,instead of specifying a value for C L , be sure to state that the frequency f refers to the series-resonant frequency, F s .
2> This is not to say that all aspects of frequency determination are tied to this single number. For example,other aspects of the crystal and oscillator determine whether the correct mode of oscillation is selected and the system’s frequency stability (short and long term).
3. Defining F L at C L
We now take Equation (1) as our defining relation for what we mean by a crystal having a given frequency at a given load capacitance.
Definition: A crystal has frequency F L at a load capacitance C L when the reactance X of the crystal at frequency F L is given by Equation (1), where now ω = 2πF L .
Recall that, around a given mode, the reactance of a crystal increases from negative values, through zero at series resonance, to large positive values near parallel resonance where it rapidly decreases to large negative values, and then again it increases towards zero. (See Reference [1].) By excluding a region around parallel resonance, we have a single frequency for each value of reactance. In this way,we can associate a frequency F L given a value of C L .So, positive values of C L correspond to a frequency between series and parallel resonance. Large negative values of C L , correspond to a frequency below series resonance while smaller negative values correspond to frequencies above parallel resonance.(See Equation (3) below.)
3.1. The crystal frequency equation So, how much does the frequency of oscillation depend on the load capacitance C L ? We can answer this question by determining how the crystal frequency F L depends on the crystal load capacitance CL . One can show that to a very good approximation that
where C 1 and C 0 are the motional and static capacitances of the crystal, respectively. (See Reference [1] for a derivation and discussion of this relation.) For the purposes of this note, we shall refer to Equation (3) as the crystal frequency equation.
This shows the dependence of a crystal oscillator’s operational frequency on its load capacitance and its dependence on the crystal itself. In particular, the fractional frequency change when changing the load capacitance from C L1 to C L2 is given to good approximation by
3.2. Trim sensitivity
Equation (3) gives the dependence of operating frequency F L on the load capacitance C L . The negative fractional rate of change of the frequency with C L is known as the trim sensitivity, TS. Using Equation (3), this is approximately
From this we see that the crystal is more sensitive to given change in C L at lower values of C L .
4. But what determines C L ?
Consider the simple Pierce oscillator consisting of a crystal, an amplifier, and gate and drain capacitors as shown in Figure 2.
There are at least three stray capacitances that must be considered in trying to calculate the load capacitance of the Pierce oscillator circuit.
1. An added capacitance from the input of the amplifier to ground. Sources for this could be the amplifier itself and trace capacitance to ground. As this capacitance is in parallel with C G , we can simply absorb this into our definition of C G . (That is C G is the capacitance of the capacitor to ground plus any additional capacitance to ground on this side of the amplifier.)
2. An added capacitance from the output of the amplifier to ground. Sources for this could be the amplifier itself and trace capacitance to ground. As this capacitance is in parallel with C D , we can simply absorb this into our definition of C D . (That is C D is the capacitance of the capacitor to ground plus any additional capacitance to ground on this side of the amplifier.)
3. A stray capacitance C s shunting the crystal as shown in Figure 2.
Redefining C G and C D as discussed above, it then follows [2] that one of the conditions for oscillation is
Where
is the impedance of the parallel combination of the crystal and the capacitance C s and R o is the output resistance of the amplifier.
It can be shown that the crystal resistance R as a function of load capacitance C L is given approximately by (provided C L is not too small)
where R 1 is the motional resistance of the crystal [1].It then follows that (provided C L – C s is not too small)
And
With these results, Equation (6) gives the following equation for C L
where R ′ is approximated by Equation (9). Note that the equation for C L is actually a bit more complicated than it might seem at first as R ′ depends upon on C L.It can be seen that C L decreases as R 1 increases, and so by Equation (3), the frequency of operation increases with crystal resistance. So, the load capacitance does have a dependence on the crystal itself. But as we have mentioned previously, the variation in crystal resistance and resulting sensitivity to this variation is usually sufficiently low that the dependence can be ignored. (In this case, a nominal value for crystal resistance is used in calculating C L .)
However, sometimes the resistance effect cannot be ignored. Two crystals tuned so that both have exactly the same frequency at a given load capacitance C L can oscillate at different frequencies in the same oscillator if their resistances differ. This slight difference leads to an increase in the observed system frequency variation above that due to crystal frequency calibration errors and the board-to-board component variation.
Note that in the case of zero crystal resistance (or at least negligible compared to the output resistance Ro of the amplifier), Equation (11) gives
So, in this case, the load capacitance is the stray capacitance shunting the crystal plus the series capacitance of the two capacitances on each side of the crystal to ground.
5. Measuring CL
While in principal one could calculate C L from the circuit design, an easier method is simply to measure C L . This is also more reliable since it does not rely on the oscillator circuit model, takes into account the strays associated the layout (which can be difficult to estimate), and it takes into account the effect of crystal resistance. Here are two methods for measuring C L .
5.1 Method 1
This method requires an impedance analyzer, but does not require knowledge of the crystal parameters and is independent of the crystal model.
1. Get a crystal that is similar to those that will be ordered, i.e. having similar frequency andresistance.
2. Place this crystal in the oscillator and measurethe frequency of operation F L . In placing the crystal into the circuit, be careful not to damage it or do anything to cause undue frequency shifts.(If soldered in place, allow it to cool down to room temperature.) A good technique that avoids soldering is simply to press the crystal onto the board’s solder pads using, for example,the eraser end of a pencil and observe the oscillation frequency. Just be careful that the crystal makes full contact with the board. The system can still oscillate at a somewhat higher frequency without the crystal making full contact with the board.
3. Using an impedance analyzer, measure the reactance X of the crystal at the frequency F L determined in Step 2.
4. Calculate C L using Equation (1) and the measured values for F L ( ω = 2πF L ) and X at F L .
5.2 Method 2
This method is dependent upon the four-parameter crystal model and requires knowledge of these parameters (through your own measurement or as provided by the crystal manufacturer).
1. Get a crystal that is similar to those that will be ordered, i.e. having similar frequency and resistance.
2. Characterize this crystal. In particular measure its series frequency Fs , motional capacitance C1,and static capacitance C0.
3. Place this crystal in the oscillator and measure the frequency of operation F L (as in Method 1,Step 2.)
4. Calculate C L using Equation (3) and the measured values for F L , F s , C 1 , and C 0 .
It is recommended that either procedure be followed with at least 3 crystals. When done properly, this technique often gives values for C L that are consistent to about 0.1 pF. Further confidence in the final results can be found by repeating the procedure for a number of boards to estimate the board-to-board variation of C L .
Note that in the above, F L does not have to be precisely the desired oscillation frequency f. That is, the calculated value for C L is not a strong function of the oscillation frequency since normally only the crystal is strongly frequency dependent. If, for some reason, the oscillator does have strong frequency dependent elements, then using this procedure would be quite difficult.
6. Do I really need to specify a value for CL ?
There are at least three cases where a specification of C L is not necessary:
1. You intend to operate the crystals at their series-resonant frequency.
2. You can tolerate large errors in frequency (on theorder of 0.1% or more).
3. The load capacitance of your circuit is sufficiently near the standard value (see crystal data sheet) that the frequency difference is tolerable. This difference can be calculated with Equation (4).
If your application does not meet one of the three conditions above, you should strongly consider estimating the load capacitance of your oscillator and use this value in specifying your crystals.
- 阅读(214)
- [行业新闻]FOX crystal型号表2019年03月12日 09:34
FOX CRYSTAL晶振公司成立于1979年,美国福克斯晶振电子有限公司总部位于美国的佛罗里达州的迈尔斯堡。福克斯电子公司的成立使得该公司成为美国领先的高精度,高可靠性的频率元器件制造供应商。按当时的情况来看,FOX晶振公司还是处于一个小型的家族式石英晶体和振荡器的供应商。
美国FOX晶振公司在过去的32年中持续增长,其中一个重要因素离不开其研发部门。福克斯晶振的工程师开发出了几百种产品,而且这些产品为晶体和振荡器的性能,精度以及可靠性带来了认可的新标准。并可以不断的增长业务的需求,缩短了交付晶体的周期。
FOX CRYSTAL Crystal Company was founded in 1979, and Fox Crystal Electronics Co., Ltd. is headquartered in Fort Myers, Florida, USA. The establishment of Fox Electronics has made the company a leading supplier of high-precision, high-reliability frequency components in the United States. According to the situation at the time, FOX Crystal is still a supplier of small family quartz crystals and oscillators.
The US FOX Crystal Company has continued to grow over the past 32 years, and one of the important factors is inseparable from its R&D department. Engineers at Fox Crystal have developed hundreds of products that bring new standards of acceptance for the performance, accuracy and reliability of crystals and oscillators. And can continue to grow business needs, shortening the cycle of delivering crystals.
- 阅读(281)
- [行业新闻]NSK Ceramic Resonator2019年03月07日 10:27
台湾NSK晶振公司不仅生产石英晶振,石英晶体谐振器,晶体振荡器,温补晶振,压控晶体,还生产陶瓷谐振器(Ceramic Resonator),陶瓷滤波器(Ceramic Filter),ZTA陶瓷晶振,ZTT陶瓷晶振,3.58M,6M,4M,8M,16M,24M,27M频率均有现货供应.ZTA晶振可从低频1M到50MHZ,主要应用于电视遥控器,风扇遥控器,USB,鼠标等产品.
NRA ZTA/ MG, MT, MX DIP 1.8 MHz to 50.0 MHz 10.0*5.0*10.0 NRE ZTTCV MT, MX SMD 8.0 to 50 MHz 3.7*3.1*1.2 NRE ZTTCS MT, MX SMD 7.0 to 50 MHz 4.7*4.1*1.6 NRE ZTTCC MG SMD 2 to 6.99 MHz 7.4*3.4*1.8 NRD ZTACV MT, MX SMD 8.0 to 50 MHz 3.7*3.1*1.2 NRD ZTACS MT, MX SMD 7.0 to 50 MHz 4.7*4.1*1.6 NRD ZTACC MG SMD 2.0 to 6.99 MHz 7.4*3.4*1.8 NRT ZTT/ MG, MT, MX DIP 1.8 MHz to 50 MHz 10.0*5.0*10.0 NSK Ceramic Filter
陶瓷滤波器LT4.5MB,LT5.5MB,LT6.5MB可以免提提供样品测试,陶瓷滤波器主要应用于TV/VCR产品等.L10.7M陶瓷滤波器均可在线供应.
NRF LT4.5MB DIP 4.43MHz to 6.5MHz 5*3.2 NRF LTCA/CV SMD 10.7MHz 6.9*2.9*1.5 NRF JT4.5MD DIP 4.5MHz to 6.5MHz 9.0*5.0*10.0 NRF JT4.5MC DIP 4.5MHz to 6.5MHz 9.0*5.0*10.0 NRF JT10.7M SMD 10.7MHz 9.0*5.0*7.0 Taiwan NSK Crystal Co., Ltd. not only produces quartz crystal oscillator, quartz crystal resonator, crystal oscillator, temperature-compensated crystal oscillator, voltage-controlled crystal, but also ceramic resonator (Ceramic Resonator), ceramic filter (Ceramic Filter), ZTA ceramic crystal, ZTT ceramic. Crystal oscillator, 3.58M, 6M, 4M, 8M, 16M, 24M, 27M frequency are available from stock. ZTA crystal oscillator can be used from low frequency 1M to 50MHZ, mainly used in TV remote control, fan remote control, USB, mouse and other products.
- 阅读(189)
- [行业新闻]TXC温补振荡器及VCXO振荡器系列选型手册2019年03月04日 14:38
TXC晶振有分好多種類型,溫補晶體振蕩器,壓控振蕩器,恒溫晶體振蕩器OCXO振蕩器.以下泰河電子為大家整理提供已分好類別的TXC溫補振蕩器及VCXO振蕩器選型表,以供大家選型參考使用.雖然TXC晶振的型號眾多,但是並不會難記.
1.5px;"="">TXC压控振荡器VCXO系列 - 差分晶振
一般来说单相输出称之为晶体振荡器,并以正弦波或者CMOS波型(矩型波)输出为主要代表.
剪切的正弦波输出具有类似圆角矩形的波形,并常用于RF电路,因为它抑制了不必要的谐波.TCXO(温度补偿晶体振荡器)被称为削波正弦波输出的产物.由于CMOS波输出是对应于数字信号处理的逻辑电子的信号输出,所以有利于数字信号的传送,并用于时钟,如CPU等.
Model Frequency Stability
(-40~85ºC)Voltage Output Oscillation Dimensions BJ 60 ~ 200MHz ±50ppm 3.3V LVPECL Fundamental 7 x 5 x 1.3mm BK 60 ~ 700MHz ±50ppm 3.3V LVPECL PLL 7 x 5 x 1.3mm BN 60 ~ 200MHz ±50ppm 3.3V LVDS Fundamental 7 x 5 x 1.3mm BP 60 ~ 700MHz ±50ppm 3.3V LVDS PLL 7 x 5 x 1.3mm CJ 60 ~ 200MHz ±50ppm 3.3V LVPECL Fundamental 5 x 3.2 x 1.2mm CN 50 ~ 200MHz ±50ppm 3.3V LVDS Fundamental 5 x 3.2 x 1.2mm 1.5px;"="">TXC温补振荡器TCXO系列 - Basic
什么是温补晶振。来自温度传感器的输出信号用于通过补偿网络产生校正电压。 校正电压施加到VCXO中的变容二极管。 电容变化可以补偿晶体的频率与温度特性.
Model Frequency Stability
(-30~85ºC)Operating Temp Voltage Output Dimensions 7Q 13 ~ 52MHz ±2ppm -40~+85ºC 2.4V-3.3V Clipped
Sinewave3.2 x 2.5 x 1mm 7L 13 ~ 52MHz ±2ppm -40~+85ºC 1.8V-3.3V Clipped
Sinewave2.5 x 2 x 0.8mm 7Z 26 ~ 52MHz ±2ppm -40~+85ºC 1.8V-3.3V Clipped
Sinewave2.0 x 1.6 x 0.8mm 8P 26 ~ 52MHz ±2ppm -40~+85ºC 1.8V-3.3V Clipped
Sinewave1.6 x 1.2 x 0.6mm TXC温补振荡器TCXO系列 - 高精度振荡器 Model Frequency Stability
(-40~85ºC)Voltage Output Dimensions 7N 10 ~ 52MHz ±0.28ppm 2.7V-5.5V Clipped
Sinewave
/CMOS7 x 5 x 2mm 7P 10 ~ 52MHz ±0.28ppm 2.7V-5.5V Clipped
Sinewave
/CMOS5 x 3.2 x 1.2mm TXC恒温晶体振荡器OCXO系列 - CMOS Model Frequency Stability Voltage Output Dimensions OC 10 ~ 25MHz ±5ppb
(0~70ºC)5, 12V CMOS 36 x 27mm OB 10 ~ 25MHz ±10ppb
(0~75ºC)3.3, 5V CMOS 25 x 25mm OA 10 ~ 40MHz ±200ppb
(-30~70ºC)3.3, 5V CMOS 20 x 20mm - 阅读(240)
相关搜索
热点聚焦
- 1时钟振荡器XO57CTECNA12M电信设备专用晶振
- 2汽车音响控制器专用晶振403C35D28M63636
- 3XCO时钟振荡器C04310-32.000-EXT-T-TR支持微控制器应用
- 4ABS07W-32.768KHZ-J-2-T音叉晶体可实现最佳的电路内性能
- 5402F24011CAR非常适合支持各种商业和工业应用
- 6无线模块专用微型ECS-240-8-36-TR晶体
- 7DSX321G晶体谐振器1N226000AA0G汽车电子控制板专用晶振
- 8lora模块低功耗温补晶振ECS-327TXO-33-TR
- 9ECS-250-12-33QZ-ADS-TR适合高冲击和高振动环境的理想选择
- 10ECS-200-20-20BM-TR紧凑型SMD晶体是物联网应用的理想选择