- [行业新闻]TG-5006CJ晶振编码X1G004131001000具有超小型2016mm温补晶体振荡器2022年08月25日 09:29
- 日本进口爱普生晶振型号TG-5006CJ,是一款温度补偿晶振,小体积晶振尺寸2.0x1.6mm,有源晶振,频率范围:13MHz至52MHz,电源电压1.8V至3.3V,具有超小型,轻薄型,低抖动,低电源电压,低损耗,低耗能,低功耗,低电平等特点,被广泛用于家电,汽车,智能手机,平板电脑,医疗设备等数码电子产品领域中,质量稳定,品质优越,深受广大客户信赖。
TG-5006CJ晶振编码X1G004131001000具有超小型2016mm温补晶体振荡器
- 阅读(659)
- [行业新闻]SG3225EEN晶振编码X1G005221000200差分晶振具有低消耗电流的特点2022年08月24日 09:17
日本进口爱普生晶振SG3225EEN,小体积晶振尺寸3.2x2.5mm有源晶振,是一款小体积六脚贴片晶振,频率范围可提供25M~200MHZ任一频点,2.5V,3.3V具有低电源电压,满足产品低消耗电流的特点,LV-PECL晶振,具有低电平,低抖动,低功耗等特性.差分晶振作为目前行业中高要求,高技术石英晶体振荡器,具有相位低,损耗低的特点,该产品中能够很容易地识别小信号,能够从容精确地处理双级信号,对外部电磁干扰(EMI)是高度免疫的,差分石英晶振满足市场需求,实现高频高精度等要求,更加保障了各种系统参考时钟的可靠性。
SG3225EEN晶振编码X1G005221000200差分晶振具有低消耗电流的特点
- 阅读(667)
- [行业新闻]1XXB24000MEA|DSB221SDN晶振|24M温补晶振2022年08月22日 10:39
1XXB24000MEA|DSB221SDN晶振|24M温补晶振
KDS晶振 原厂型号 DSB221SDN KDS晶振 原厂代码 1XXB24000MEA Device Name 产品名称系列 TCXO(温补晶振) Nominal Frequency 标称频率 24 MHZ Supply Voltage 电源电压
1.8~3.3V Load Impedance 负载阻抗 (resistance part)(parallel capacitance)
10 kΩ
10 pF
Control Voltage Range 控制电压范围
1.15 V Operating Temperature Range 工作温度范围
-40~+85℃ Storage temperature 储存温度
-40~+85℃ Current Consumption 电流消耗
1.5 mA Output Level 输出电平
0.8 Vp-p Symmetry 对称性
40/60% Harmonics 谐波
-8 dBc
SIZE 尺寸 2.5*2.0*0.9mm 1XXB24000MEA晶振产品尺寸图
1XXB24000MEA晶振产品电气表
关于1XXB24000MEA|DSB221SDN晶振|24M温补晶振 产品安装的注意事项
1端子A通孔不在底部(安装侧)。
2土地图案布局/金属掩模孔以下土地图案为参考设计。电气特性应满足安装在这片土地上的要求。在测试用地和安装用地不相连的范围内,可以改变接地方式。
对电特性没有任何影响。面罩厚度建议为0.12毫米。- 阅读(104)
- [晶振编码查询]1XXB38400MCB|KDS晶振|DSB221SDN晶振|温补晶振|削峰正弦波2022年08月22日 09:36
1XXB38400MCB|KDS晶振|DSB221SDN晶振|温补晶振
KDS晶振 原厂型号 DSB221SDN KDS晶振 原厂代码 1XXB38400MCB Device Name 产品名称系列 TCXO(温补晶振) Nominal Frequency 标称频率 38.4 MHZ Supply Voltage 电源电压
1.8~3.3VV Load Impedance 负载阻抗 (resistance part)(parallel capacitance)
10 kΩ
10 pF
Control Voltage Range 控制电压范围
1.15 V Operating Temperature Range 工作温度范围
-40~+85℃ Storage temperature 储存温度
-40~+85℃ Current Consumption 电流消耗
1.5 mA Output Level 输出电平
0.8 Vp-p Symmetry 对称性
40/60% Harmonics 谐波
-8 dBc
SIZE 尺寸 2.5*2.0*0.9mm 1XXB38400MCB晶振产品尺寸图
1XXB38400MCB晶振产品电气表
关于1XXB38400MCB|KDS晶振|DSB221SDN晶振|温补晶振 产品安装的注意事项
1端子A通孔不在底部(安装侧)。
2土地图案布局/金属掩模孔以下土地图案为参考设计。电气特性应满足安装在这片土地上的要求。在测试用地和安装用地不相连的范围内,可以改变接地方式。
对电特性没有任何影响。面罩厚度建议为0.12毫米。- 阅读(91)
- [行业新闻]FOX晶振FK135系列编码FK135EIHM0.032768-T3是一款小体积无源晶振2022年08月22日 08:59
FOX晶振生产的FK135系列,编码FK135EIHM0.032768-T3,两脚贴片晶振,频率32.768kHz,小体积无源晶振尺寸3.2x1.5mm表面贴装,石英晶体谐振器,ESR(等效串联电阻):70kΩ,负载电容:12.5pF,频率容差±20ppm,工作温度:-40℃至+85℃,符合 RoHS/RoHS II标准,无铅 (Pb)
FOX晶振FK135系列编码FK135EIHM0.032768-T3是一款小体积无源晶振
- 阅读(667)
- [行业新闻]CTS发布32.768kHz TCXO用于实时时钟应用,TC32M5I32K76802022年08月17日 09:40
伊利诺伊州莱尔–CTS公司(纽约证券交易所代码:CTS)宣布推出一款新的TCXO晶振,其工作频率为32.768kHz,适用于需要精密实时时钟参考的应用。TT32型四脚贴片晶振提供非常严格的频率稳定性,在-40℃至+85℃范围内为±5.0ppm,可在温度变化时保持准确的时间;与使用具有经典抛物线温度曲线、+25℃转换点和-0.035ppm/℃ 2温度系数的音叉谐振器的简单晶体器件相比。
CTS发布32.768kHz TCXO用于实时时钟应用,TC32M5I32K7680,低功耗晶振
- 阅读(672)
- [行业新闻]ABS05音叉晶体1610mm器件针对节能MCU进行了优化,ABS05-32.768KHZ-9-T2022年08月16日 08:45
- ABS05系列是在需要小尺寸的 RTC电路中进行时间管理的完美解决方案。我们高要求的音叉晶体系列功耗低,可在广泛的应用中保持电池寿命。与之前的ABS07相比,ABS05可节省33%的空间。ABS05器件在4.0pF的有效振荡器环路负载中具有±20ppm和±25ppm的设置容差.
特征:
频率:32.768k晶体
小型音叉晶体(1.60x1.0x0.50mm封装)
薄型 - 高度限制设计的理想选择
提供标准的±20ppm设置容差
适用于工业应用的扩展温度-40℃至+85℃
应用:
无线模块
物联网 (IoT)
蓝牙/低功耗蓝牙 (BLE)
商业和工业应用
低功耗 MCU、SoC、收发器
通讯与测量设备
ABS05音叉晶体1610mm器件针对节能MCU进行了优化,ABS05-32.768KHZ-9-T,石英晶体 - 阅读(678)
- [行业新闻]VT-701A系列VT-701A-HFE-507B-10M0000000可满足您的低功耗或低抖动应用的要求2022年08月08日 08:35
我们的多输出和高度灵活的基于石英和MEMS的PureSilicon? 振荡器采用各种行业标准封装,可满足您的低功耗或低抖动应用的要求。使用我们的Clockworks ? 配置器和采样工具可以轻松地将您的振荡器定制为频率、温度、ppm和封装尺寸的任意组合,以满足您的应用要求。
Microchip的VT-701A系列温度补偿晶体振荡器 (TCXO) 是一款石英稳定、削波正弦波或CMOS输出、模拟温度补偿晶振,采用小体积尺寸7.0x5.0mm 密封陶瓷封装,采用2.5V或3.3V电源供电。
产品特点:
削波正弦波或CMOS输出
5MHz至52MHz输出频率
+/-50ppb温度稳定性
可选频率调谐
电源电压 2.5V,3.3V
最小输出频率 5MHz
最大输出频率 52MHz
输出逻辑 CMOS,削波正弦波VT-701A系列VT-701A-HFE-507B-10M0000000可满足您的低功耗或低抖动应用的要求,温补晶体振荡器
- 阅读(677)
- [行业新闻]Raltron晶振OX7000系列是业界最小的SMD恒温晶体振荡器OX4570A-D3-2-20.000-3.32022年08月05日 09:01
迈阿密——全球领先的高性能频率管理公司Raltron 元器件和天线产品,设计了最小的SMD恒温晶体振荡器 (OCXO)市场上有售。尺寸仅为9mmx7mm,OX7000系列专为应用而设计,要求超小尺寸和优异的温度稳定性。这包括5G无线的所有方面 基础设施、传输、精密仪器、广播、公用事业计量基础设施和更多。
OX7000系列覆盖从5.000MHz到40.000MHZ的频率范围150mA稳态下的电压为3.3V。OX7000系列OCXO结合了超小型和超 +/-10 ppb的可靠频率稳定性。
“OX7000系列OCXO晶振,专为支持客户需求而打造,以微型产品的形式提供卓越的性能 包裹。确保回流后最小的频率偏差,高稳定性OCXO是低 要求低噪声的频率无线和射频应用,”Raltron销售副总裁Ross Weiss说
OX7000系列有源晶振,采用密封封装以提高可靠性,提供3分钟的快速预热时间、10kHz偏移时-158 dBc/Hz的低相位噪声和HCMOS输出电平。
特征:紧密的,高可靠性,频率高达40MHz
Raltron晶振OX7000系列是业界最小的SMD恒温晶体振荡器OX4570A-D3-2-20.000-3.3
- 阅读(708)
- [行业新闻]Microchip晶振DSC613系列3路输出低功耗MEMS时钟振荡器DSC613RI3A-010UT2022年08月04日 08:58
DSC613系列器件是业界最小的MEMS时钟发生器,可替代板上最多三个晶体和振荡器,从而将时序元件板空间减少多达 80%。时钟发生器通过集成低功率和高稳定性的微机电系统 (MEMS)谐振器,无需外部晶体。该系列包括两个低功耗分数 PLL,可提供领先的频率灵活性和稳健的抖动性能。客户可以配置输出频率、控制引脚功能、封装尺寸、PPM 精度和温度范围。根据自定义电路板负载条件,最多可提供三种输出驱动强度。扩频时钟也可用于降低 EMI。DSC613是一款高度可配置的器件,出厂时已编程以满足客户的需求
Microchip晶振DSC613系列3路输出低功耗MEMS时钟振荡器DSC613RI3A-010UT
- 阅读(726)
- [行业新闻]小体积无源晶振ECS-120-18-23G-JGN-TR具备优良的耐恶劣环境特性2022年08月03日 08:59
小体积无源晶振ECS-120-18-23G-JGN-TR具备优良的耐恶劣环境特性
在现在的电子市场中,小型的贴片晶振才是市场上的主打商品,相对于插件晶振来说,贴片晶振体积小型,并且可使用现代SMT自动贴片机高速焊接,既节省了昂贵的人工费用,也提高了生产效率,且产品体积的的变小也使产品带来更高的可靠性和稳定性能,小体积无源晶振ECS-120-18-23G-JGN-TR,ECS-120-S-20A-TR晶振等产品,均是两脚SMD晶振,批量为12MHZ晶振。具备优良的耐恶劣环境特性,符合欧盟ROHS标准。满足无铅高温焊接曲线要求。
- 阅读(674)
- [行业新闻]亚陶晶振KX201系列在广泛的工作条件下实现了卓越的稳定性,KX201VIS032.768000时钟振荡器2022年08月01日 11:48
亚陶晶振KX201系列实时时钟振荡器在广泛的工作条件下实现了卓越的稳定性。它利用Pericom专有技术实现低于30μA的超低电流。输出时钟信号与LVCMOS/LVTTL逻辑电平兼容。该器件采用卷带包装,采用2.0x1.6mm表面贴装陶瓷封装。
特征:
AT Cut 32.768kHz XO
CMOS兼容逻辑电平
超低有功电流(< 30μA)
非常严格的温度稳定性
专为标准回流和清洗技术而设计
无铅且符合 RoHS/Green 标准
应用:需要低电流和高度稳定性的实时时钟振荡器亚陶晶振KX201系列在广泛的工作条件下实现了卓越的稳定性,KX201VIS032.768000时钟振荡器
- 阅读(666)
- [行业新闻]大真空旗下两款基站用Oscillator性能详细剖析介绍2021年01月15日 13:46
大真空旗下两款基站用Oscillator性能详细剖析介绍.
DC7050AS和DSA/DSB535SGA是大真空旗下的可用于通信基站的石英晶振产品,其中DC7050AS是一款恒温晶振, DSA/DSB535SGA中DSA系列是压控温补晶振,DSB系列是温补晶振系列;对于通信基站来说,工作环境的复杂性决定了它所使用的晶体频控元件必须是能够承受复杂环境所带来的的影响.
- 阅读(150)
- [行业新闻]石英晶振价格的决定因素2020年04月20日 17:30
- 石英晶振价格由以上六点组成,并且小编也对其进行了详细的解说方便大家的理解.没必要说要求晶振太好,尺寸有多小,主要就是SMD晶振与电子产品能够贴合,能使产品功能最大化即可.如果一味的追求晶振的质量而忽略自家产品的要求,最后可能会得不偿失.
- 阅读(137)
- [行业新闻]智能手机信号弱是不是晶振的错2020年04月16日 17:18
- 智能手机信号弱的话可以采用温补晶振,在使用的过程中可以减少环境的干扰.温补晶振具有温度补偿功能,很大程度上减少了天气影响,感觉它就是为消费电子诞生.像现在智能手机很多都是往轻,小型方向发展,那石英晶振也要采用2016mm,1612mm的,这样更显得贴近产品需求,高端额消费电子都会用到温补晶振,某些产品会有个例.
- 阅读(167)
- [行业新闻]日本毕业典礼能顺利进行是机器人振荡器的功劳2020年04月13日 17:21
- Newme机器人减少了人员的接触,让大学毕业生顺利毕业,是研发部又一大贡献.在大家眼中机器人可以代替普工的劳动生产,是减少服务员的招聘,谁又能想到可以用在毕业典礼上.校方和机器人一起见证毕业时代,是多么值得开心的时刻,看它的整体照片是有点怪怪的,但总的来说还是对社会的一大贡献.这一贡献少不了研发公司的投入,技术人员的精益求精,振荡器的应用.
- 阅读(110)
- [行业新闻]TXON-211晶振告诉你台湾晶体有多大优势2020年04月07日 17:16
- 说到晶振,今天简单来介绍一下安碁晶振,是台湾晶振中其中的一个,成立三十年,经过精湛的技术,客户为先的发展理念,在电子市场得到广大客户的认可.该公司专业生产晶体振荡器,小型谐振器,温补晶振,耐高温晶体,在消费电子,家用电器中得到使用.接下来跟大家简单了解一下安碁公司的TXON-211晶振.
- 阅读(154)
- [行业新闻]石英晶体负载电容还有频率吗?2019年11月07日 14:54
石英晶体负载电容还有频率吗?这句话听起来又矛盾又好奇,为什么负载电容里面还会有频率出现.我们所知道的不都是石英晶振产品内部有标准频率参数,负载电容值,频率偏差以及工作温度等相关参数,但又是为什么石英晶体负载电容还会有频率呢?那么以下,请跟随着我们来去了解探讨一下有关于<石英晶体负载电容还有频率吗?>的疑问!
当订购用于工作在频率f下的振荡器的晶体时,例如32.768 kHz或20 MHz,通常仅指定工作频率是不够的。尽管晶体将以接近其串联谐振频率的频率振荡,但实际的振荡频率通常与该频率稍有不同(在“并联谐振电路”中会稍高一些)1。
因此,假设您有一个晶体振荡器电路,并且想要购买晶体,以使放置在该电路中时的振荡频率为f。您需要告诉晶振厂家完成什么?您是否需要发送振荡器设计的示意图以及其设计的所有相关细节,例如选择与布局相关的电容器,电阻器,有源元件和杂散?幸运的是,答案是否定的。除了频率f之外,仅需一个数字,即负载电容CL。
2.什么是CL?
假设您的晶体振荡器以所需的频率f运行。在该频率下,晶体具有复阻抗Z,并且对于工作频率而言,这是晶体唯一重要的特性。因此,为了使振荡器在频率f下工作,您需要在频率f下具有阻抗Z的晶体。因此,最糟糕的是,您只需指定一个复数Z = R + jX。实际上,它甚至比这更简单。
尽管原则上应该在频率f处指定晶体电阻R,但通常R中的晶体间差异以及振荡器对此变化的敏感性足够低,因此无需指定R。这并不是说抗结晶性没有影响;是的。我们将在第4节中进一步讨论。
因此,剩下一个值来指定:f处的晶体电抗X。因此,可以指定一种在20 MHz时电抗为400的晶体。取而代之的是,通常通过指定电容CL并等于
在这里我们设定了ω=2πf。 在物理上,在该频率下,晶振和电容CL的串联组合的阻抗具有零相位(等效地,具有零电抗或纯电阻)。 参见图1。
其中第二步遵循公式(1),电容C的电抗为-1 /(ωC)。
图1-该串联组合在晶振具有负载电容CL的频率下具有零相阻抗
因此,确保适当的振荡频率的任务是提供在指定频率下具有所需电抗的组件(在这种情况下为晶体),这由等式(1)2用电容CL表示。例如,我们不是指定晶体在20 MHz时具有400 frequency的电抗,而是指定在20 MHz处具有20 pF的负载电容的晶体,或更通常地,我们指定在20 pF的负载电容下的晶体频率为20 MHz。
在“并联谐振电路”中,CL为正,通常在5 pF至40 pF之间。在这种情况下,晶体在晶体的串联和并联谐振频率(分别为Fs和Fp)之间的狭窄频带内工作。
注释:1订购晶体进行串联谐振操作时,不要指定CL的值,而应声明频率f指的是串联谐振频率Fs。
2这并不是说频率确定的所有方面都与此唯一数字相关。例如,晶体和振荡器的其他方面决定了是否选择了正确的振荡模式以及系统的频率稳定性(短期和长期)。
虽然真正的“串联谐振电路”没有与之相关的负载电容[或方程式(1)可能是无穷大],但大多数“串联谐振电路”实际上实际上是在串联谐振频率之外工作的,因此确实有一个有限负载电容(可以为正或负)。但是,如果此偏移很小,并且不需要指定负载电容,则可以忽略该偏移,也可以通过在指定频率f中稍有偏移来处理它。
正如我们将在第4节中看到的那样,振荡器和晶体都确定CL。但是,该晶体的作用很弱,因为在零电阻的极限内,该晶体在确定CL时根本不起作用。在这种限制情况下,将CL称为振荡器负载电容是有意义的,因为它完全由振荡器决定。但是,到了在订购晶体的时间上,可以指定在负载电容CL处具有频率f的晶体,即这是晶体频率的条件。因此,将CL称为晶体负载电容是合理的。出于争论的目的,我们简单地避免了这个问题,并使用术语负载电容。
3.在CL上定义FL
现在,对于在给定的负载电容下具有给定频率的晶体,我们用方程式(1)作为定义关系。
定义:当晶体在频率FL处的电抗X由公式(1)给出时,晶体在负载电容CL处具有频率FL,其中ω=2πFL。
回想一下,在给定模式下,晶体的电抗从负值增加,在串联谐振时从零增加到在并联谐振附近的大正值,在此它迅速减小到大负值,然后又增加到零。 (参见参考文献[1]。)通过排除并联谐振周围的区域,我们为每个电抗值提供了一个频率。这样,我们可以关联给定CL值的频率FL。因此,CL的正值对应于串联谐振和并联谐振之间的频率。 CL的大负值对应于低于串联谐振的频率,而较小的负值对应于高于并联谐振的频率。 (请参见下面的公式(3)。)
3.1。 晶体频率方程
那么,振荡频率在多大程度上取决于负载电容CL? 我们可以通过确定晶体频率FL如何取决于晶体负载电容CL来回答这个问题。 可以证明这一点非常近似
其中C 1和C 0分别是晶体的动电容和静电容。 (有关该关系的推导和讨论,请参见参考文献[1]。)为便于说明,我们将公式(3)称为晶体频率公式。
这表明晶体振荡器的工作频率与其负载电容的相关性以及对晶体本身的相关性。 特别地,当将负载电容从CL1更改为CL2时,分数频率变化可以通过以下方式很好地近似:
3.2。 修剪灵敏度
公式(3)给出了工作频率FL对负载电容CL的依赖性。 频率随CL的负变化率称为调整灵敏度TS。 使用公式(3),这大约是
由此可见,在较低的CL值下,晶体对CL的给定变化更敏感。
4.但是什么决定CL?
考虑一个简单的皮尔斯振荡器,它由一个晶体,一个放大器以及栅极和漏极电容器组成,如图2所示。
试图计算皮尔斯振荡器电路的负载电容时,必须考虑至少三个杂散电容。
1.从放大器的输入到地面的附加电容。其来源可能是放大器本身,并且将电容跟踪到地。由于此电容与C G并联,因此我们可以简单地将其吸收到C G的定义中。 (CG是电容器对地的电容加上放大器此侧对地的任何附加电容。)
2.从放大器的输出到地面的附加电容。其来源可能是放大器本身,并且将电容跟踪到地。由于此电容与C D并联,因此我们可以简单地将其吸收到C D的定义中。 (即CD是电容器接地电容,再加上放大器此侧的任何其他接地电容。)
3.杂散电容C s使晶体分流,如图2所示。
如上所述重新定义C G和C D,然后得出[2]振荡的条件之一是
Where
是晶体和电容C s的并联组合的阻抗,而R o是放大器的输出电阻。
可以看出,晶振电阻R是负载电容CL的函数,近似为:(假设CL不太小)
其中R 1是晶体[1]的运动阻力。
然后得出结论(提供的CL – C s不太小)
以及
根据这些结果,式(6)给出了CL的以下方程式
其中R′由等式(9)近似。请注意,CL的方程实际上比起初看起来要复杂一些,因为R'取决于CL。
可以看出,CL随R 1的增加而减小,因此通过公式(3),工作频率随晶体电阻而增加。因此,负载电容确实与晶体本身有关。但是,正如我们前面提到的,晶体电阻的变化以及对这种变化的灵敏度通常足够低,因此可以忽略不计。 (在这种情况下,晶体电阻的标称值用于计算CL。)
但是,有时抗拒效果不容忽视。调谐两个晶体,以使它们在给定的负载电容CL下具有完全相同的频率,如果它们的电阻不同,则它们可以在同一振荡器中以不同的频率振荡。这种微小的差异导致所观察到的系统频率变化增加,高于晶体频率校准误差和板对板组件变化所引起的变化。
注意,在晶体电阻为零的情况下(或与放大器的输出电阻R o相比,至少可忽略不计),公式(11)给出
因此,在这种情况下,负载电容是将晶体分流的杂散电容加上晶体每一侧的两个电容与地之间的串联电容。
5,测量CL
虽然原则上可以从电路设计中计算出CL,但是一种更简单的方法是简单地测量CL。这也更加可靠,因为它不依赖于振荡器电路模型,考虑了与布局相关的杂散(可能难以估计),并且考虑了晶体电阻的影响。这是两种测量CL的方法。
5.1方法1
该方法需要阻抗分析仪,但不需要了解晶体参数,并且与晶体模型无关。
1.获得与将要订购的晶体相似的晶体,即具有相似的频率和电阻。
2.将此晶体放置在振荡器中,并测量操作FL的频率。将晶振放入电路中时,请注意不要损坏它或做任何会引起不适当频率偏移的事情。 (如果焊接到位,请使其冷却至室温。)避免焊接的好方法是简单地使用例如铅笔的橡皮擦末端将晶体压在板的焊盘上,并观察振荡频率。只要注意晶体与电路板完全接触即可。该系统仍然可以以较高的频率振荡,而晶体不会与电路板完全接触。
3.使用阻抗分析仪,以步骤2中确定的频率FL测量晶体的电抗X。
4.使用等式(1)以及在FL处的FL(ω=2πFL)和X的测量值来计算CL。
5.2方法2
此方法取决于四参数晶体模型,并且需要了解这些参数(通过您自己的测量或晶体制造商提供的知识)。
1.获得与将要订购的晶体相似的晶体,即具有相似的频率和电阻。
2.表征该晶体。特别要测量其串联频率F s,运动电容C 1和静态电容C 0。
3.将此晶体放在振荡器中,并测量操作FL的频率(如方法1,步骤2所示)。
4.使用公式(3)和FL,F s,C 1和C 0的测量值计算CL。
建议采用至少3个晶体进行这两种方法。正确完成后,该技术通常得出的CL值约为0.1 pF。通过对多个电路板重复该过程以估计CL的电路板间差异,可以找到对最终结果的进一步信心。
注意,在上面,FL不必精确地是期望的振荡频率f。也就是说,CL的计算值不是振荡频率的强函数,因为通常仅晶体是强烈依赖于频率的。如果由于某种原因,振荡器确实具有很强的频率相关性,那么使用该程序将非常困难。
6.我真的需要为CL指定值吗?
至少有三种情况不需要CL的规范:
1.您打算以晶体的串联谐振频率进行操作。
2.您可以容忍频率中的较大误差(大约0.1%或更高)。
3.电路的负载电容足够接近标准值(请参见晶振数据表),以允许频率差。可以使用公式(4)计算该差异。
如果您的应用不满足上述三个条件之一,则应强烈考虑估算振荡器的负载电容,并在指定晶体时使用该值。
- 阅读(195)
- [行业新闻]Resonators的各项参数及性能2019年11月05日 14:39
石英晶体谐振器在电子学中的重要性在于其极高的Q值、相对较小的尺寸和优异的温度稳定性。
石英晶体谐振器利用石英的压电特性直接压电效应是指机械应力作用下某些材料产生的电极化效应。逆效应是指同一材料在电场作用下产生的变形。
在石英晶体谐振器中,在两个电极之间放置一薄片石英,其相对于晶体轴以适当的方向切割。施加在这些电极上的交流电压会使石英同时振动。伴随而来的极化变化构成了通过谐振器的电位移电流。
当外加电压的频率接近石英薄片的机械共振频率之一时,振动的振幅变得很大。伴随的位移电流也会增大,因此器件的有效阻抗会减小。在石英晶体谐振器作为晶体振荡器的频率控制元件的应用中,阻抗随共振附近频率的变化而迅速变化是关键因素。
在电气方面,石英晶体可以用图1中的等效电路表示,其中串联组合r1、l1和c1表示压电效应对阻抗的贡献,c0表示电极之间的并联电容以及任何杂散保持器电容。电感l1是石英质量的函数,而电容c1与其刚度相关。电阻r1是石英和安装装置损耗的结果。等效电路的参数测量精度可达1%左右。
等效电路的电抗频率图如图2所示。晶振性能的相关公式有很多,其中第一个是fs。这是晶体串联共振的频率,由下式给出:
其中fs以赫兹表示,l1以亨利表示,c1以法拉表示。
典型晶体参数值
校准公差
校准公差是晶体在特定温度、基准温度(通常为25°C)下频率的最大允许偏差。
频率稳定性
晶振不稳定有多种原因。温度变化和质量的物理变化导致了我们称之为老化的长期漂移,这可能是我们最关心的问题。
通过适当选择晶振切割和(对于严格的公差要求)在晶振电路中包括与温度相关的电抗,或在小烤箱中保持恒定温度,可将温度变化的影响降至最低。at-cut晶体是当今应用最广泛的晶振,因为它们的频率-温度曲线家族很容易以低成本为所有应用(除了最苛刻的应用)提供良好的性能。
未补偿的AT切割晶体可以在-10°C到60°C的范围内规定公差为±5ppm,更宽的温度范围需要更大的公差,如图3所示,显示了AT切割频率温度曲线的典型系列这些曲线可以用三次方程表示,并且强烈依赖于石英坯料的切割角度零温度系数的点称为上下拐点通过选择切割角度,可以将一个转折点放置在需要的位置;然后固定另一个转折点,因为这两个转折点在20°~30°C范围内的某个点上是对称的。转弯点之间的坡度随着它们一起移动而变小。设计用于烘箱的晶体被切割,以便上转折点与烘箱工作温度一致。
图4显示了几个低频切割的频率-温度曲线。J-cut在10kHz以下使用,而XY-cut可以在3kHz到85kHz之间使用。可在10KHz范围内使用NT切割。dt-cut适用于100khz至800khz左右,ct-cut适用于300khz至900khz。
负载电容
晶振可以由其制造商在fr处进行校准,在fr处它们看起来是电阻的(或非常接近fr的fs),或者在与电容性负载共振时,它们当然必须是电感的。后一种情况称为负载共振,通常用符号fl表示;更具体地说,符号f30,例如,表示晶体与30pF电容性负载共振的频率。
晶体电抗曲线上需要校准的点由电路结构决定一般来说,振荡器中的非反相保持放大器需要在fr处校准,而反相放大器需要在“负载电容”cl的某个值处校准。后一种配置依赖于电感晶体以及与之共振的负载电容,提供180度的相位偏移。
该规则最常见的例外是,当小电容器(例如变容二极管)与非反相放大器电路中的晶体串联以提供一定程度的频率调整时。在这种情况下,必须用电容的平均值校准晶体的共振。
可拉性
晶体的可拉性是在给定的负载电容变化下测量其频率变化的一种方法。这通常表示为串联谐振频率(fr)和负载谐振频率(fL)之间的差异该偏移量可使用分数负载谐振频率偏移量(dl)以百万分之几计算,即给定值cl时,从fr到fl的实际频率变化。
其中C1,C0和CL均以相同单位表示。图5显示了频率变化相对于负载电容变化的影响的典型曲线。
另外,通常将晶体的可拉性表示为修整灵敏度,单位为ppm / pF负载电容变化。 通过ppm / pF给出:
其中C1,C0和CL以pF为单位,并且在图6中以图形方式显示了(C0 + CL)的各种值。
- 阅读(263)
- [行业新闻]Analyze the aging of quartz crystal2019年10月31日 11:50
The 'ageing' of a quartz crystal results in a small change of frequency over time and this effect may have to be taken into account by the customer when designing their circuit depending upon the overall specification that needs to be achieved. There are two main causes of ageing in quartz crystals, one due to mass-transfer and the other due to stress.
Mass-Transfer
Any unwanted contamination inside the device package can transfer material to or from the SMD CRYSTALcausing a change in the mass of the quartz blank which will alter the frequency of the device. For example, the conductive epoxy used to mount the quartz blank can produce 'out-gassing' which can create oxidising material within the otherwise inert atmosphere inside the sealed crystal package and so this production process must be well controlled. Ideally the manufacturing method is as clean as possible to negate any effects and give good ageing results.
Stress
This can occur within various components of the crystal from the processing of the quartz blank, the curing of the epoxy mounting adhesive, the crystal mounting structure and the type of metal electrode material used in the device.Heating and cooling also causes stress due to different expansion coefficients. Stress in the system usually changes over time as the system relaxes and this can cause a change in frequency.
Ageing in practice
When looking at example ageing test results of crystals,it can be seen that the change in frequency is generally greatest in the 1st year and decays away with time. It must be noted however that for example if a device is specified at ±5ppm max per year; it does not follow that the ageing after 5 yrs will be ±5ppm x 5yrs, i.e. ±25ppm. In practice,the example ±5ppm ageing device may be only ±1ppm to ±2ppm in the 1st year of operation and then reduces over subsequent years. It is common to use a general 'guide-rule' for crystal ageing of ±10ppm max over 10 years although in reality it is usually much less than this. It is impossible to predict the exact ageing of a device as even parts made at the same time and from the same batch of quartz will exhibit slightly different ageing characteristics.The production process must be consistent from part to part, from the manufacture of the quartz blank, the electrode size and its placement, to the epoxy used to mount the quartz and its curing thermal profile, all have a slight affect on frequency. Devices can age negatively or positively depending upon the internal causes although parts from one batch tend to follow similar results. Generally the ageing effect is negative in over 90% of parts manufactured.
Accelerated ageing
It is common industry practice to use an accelerated ageing process to predict long term frequency movement by soaking devices at elevated temperatures and measuring frequency movement at relevant intervals. It is normal to test crystals using a passive test (i.e. non-powered). The general rule used is that soaking a crystal at +85℃ for 30 days is equivalent to 1 year of ageing at normal room temperature. If this test is extended for enough time then the recorded data can be plotted graphically to enable via extrapolation, the prediction of future long term ageing.
Frequency adjustment
Note that the ageing of quartz effectively changes the frequency tolerance of the crystal and does not directly influence the stability of the quartz over temperature to any great degree as this parameter is dictated by the 'cut-angle' of the quartz used. If using quartz oscillators that have a voltage-control function such as VCXOs, TCXOs or OCXOs, the output frequency can be adjusted back to its nominally specified value.
Design
The engineer designing a circuit using either a crystal or oscillator will generally know what overall stability figure their equipment must meet over a particular time period.
As the tolerance and/or stability of a device decreases then the more important ageing becomes. For example using a TCXO at ±1ppm stability over temperature will require ageing to be kept to relatively small values. However, if the total frequency movement allowance of a design is for example ±200ppm and a device with a rating of ±100ppm is used then a small amount of ageing can effectively be ignored.
- 阅读(158)
相关搜索
热点聚焦
- 1时钟振荡器XO57CTECNA12M电信设备专用晶振
- 2汽车音响控制器专用晶振403C35D28M63636
- 3XCO时钟振荡器C04310-32.000-EXT-T-TR支持微控制器应用
- 4ABS07W-32.768KHZ-J-2-T音叉晶体可实现最佳的电路内性能
- 5402F24011CAR非常适合支持各种商业和工业应用
- 6无线模块专用微型ECS-240-8-36-TR晶体
- 7DSX321G晶体谐振器1N226000AA0G汽车电子控制板专用晶振
- 8lora模块低功耗温补晶振ECS-327TXO-33-TR
- 9ECS-250-12-33QZ-ADS-TR适合高冲击和高振动环境的理想选择
- 10ECS-200-20-20BM-TR紧凑型SMD晶体是物联网应用的理想选择